Investigations and Prospective Data Collection

confused-winnerOne of the problems we face while trying to detect and respond to adversaries is in the sheer amount of data we have to collect and parse. Twenty years ago it wasn’t as difficult to place multiple sensors in a network, collect packet and log data, and store that data for quite some time. In modern networks, that is becoming less and less feasible. Many others have written about this at length, but I want to highlight two main points.

Attackers play the long game. The average time from breach to discovery is over two hundred days. Despite media jargon about “millions of attacks a day” or attacks happening “at the speed of light”, the true nature of breaches is that they are not speedy endeavors from the attackers side. Gaining a foothold in a network, moving laterally within that network, and strategically locating and retrieving target data can take weeks or months. Structured attackers don’t win when they gain access to a network. They win once they accomplish their objective, which typically comes much later.

Long term storage isn’t economical. While some organizations are able to store PCAP or verbose log data in terms of months, that is typically reserved for incredibly well funded organizations or the gov/mil, and is becoming less common. Even on smaller networks, most can only store this data in terms of hours, or at most a few days. I typically only see long term storage for aggregate data (like flow data) or statistical data. The amount of data we generate has dramatically outgrown our capability to store and parse through that data, and this issue it only going to worsen for security purposes.

Medicine and Prospective Collection

The problem of having far too much data to collect and analyze is not unique to our domain. As I often do, let’s look towards the medical field. While the mechanics are a lot different, medical practitioners rely on a lot of the same cognitive skills to investigate afflictions to the human condition that we do to investigate afflictions to our networks. These are things like fluid ability, working memory, and source monitoring accuracy all work in the same ways to help practitioners get from a disparate set of symptoms to an underlying diagnosis, and hopefully, remediation.

Consider a doctor treating a patient experiencing undesirable symptoms. Most of the time a doctor can’t look back at the evolution of a persons health over time. They can’t take a CAT scan on a brain as it was six months ago. They can’t do an ultrasound on a pancreas as it was two weeks ago. For the most part, they have to take what they have in front of them now or what tests can tell them from very recent history.

If what is available in the short term isn’t enough to make a diagnosis, the physician can determine criteria for what data they want to observe and collect next. They can’t perform constant CAT scans, ultrasounds, or blood tests that look for everything. So, they apply their skills and define the data points they need to make decisions regarding the symptoms and the underlying condition they believe they are dealing with. This might include something like a blood test every day looking at white blood cell counts, continual EKG readings looking for cardiac anomalies, or twice daily neurological response tests. Medical tests are expensive and the amount of data can easily be overwhelming for the diagnostic process. Thus, selectively collecting data needed to support a hypothesis is employed. Physicians call this a clinical test-based approach, but I like to conceptualize it as prospective data collection. While retrospective data looks at things that have previously been collected up until a point in time, prospective data collections rely on specific criteria for what data should be collected moving forward from a fixed point in time, for a set duration. Physicians use a clinical strategy with a predominate lean towards effective use of prospective data collection because they can’t feasibly collect enough retrospective data to meet their needs. Sound familiar?

Investigating Security Incidents Clinically

As security investigators, we typically use a model based solely on past observations and retrospective data analysis. The prospective collection model is rarely leveraged, which is surprising since our field shares many similarities with medicine. We all have the same data problems, and we can all use the same clinical approach.

The symptoms our patients report are alerts. We can’t go back and look at snapshots of a devices health over the retrospective long-term because we can’t feasibly store that data. We can look back in the near term and find certain data points based on those observations, but that is severely time limited. We can also generate a potential diagnosis and observe more symptoms to find and treat the underlying cause of what is happening on our networks.

Let’s look at a scenario using this approach.

Step 1

An alert is generated for a host (System A). The symptom is that multiple failed login attempts where made on the devices administrator account from another internal system (System B). 

Step 2

The examining analyst performs an initial triage and comes up with a list of potential diagnoses. He attempts to validate or invalidate each diagnosis by examining the retrospective data that is on hand, but is unable to find any concrete evidence that a compromise has occurred. The analyst determines that System B was never able to successfully login to System A, and finds no other indication of malicious activity in the logs. More analysis is warranted, but no other data exists yet. In other scenarios, the investigation might stop here barring any other alerting. 

Step 3

The analyst adds his notes to the investigation and prunes his list of diagnoses to a few plausible candidates. Using these hypothesis diagnoses as a guide, the analyst generates a list of prospective collection criteria. These might include:

  • System A: All successful logins, newly created user accounts, flow data to/from System B.
  • System B: File downloads, attempted logins to other internal machines, websites visited, flow data to/from System A.

This is all immensely useful data in the context of the investigation, but it doesn’t break the bank in terms of storage or processing costs if the organization needs to store the data for a while in relation to this small scope. The analyst tasks these collections to the appropriate sensors or log collection devices. 

Step 4

The prospective collections record the identified data points and deliver them exclusively to the investigation container they are assigned to. The analyst collects these data points for several days, and perhaps refines them or adds new collections as data is analyzed.

Step 5

The analyst revisits and reviews the details of the investigation and the returned data, and either defines additional or refined collections, or makes a decision regarding a final diagnosis. This could be one of the following:

  • System B appears to be compromised and lateral movement to System A was being attempted.
  • No other signs of malicious activity were detected, and it was likely an anomaly resulting from a user who lost their password. 

In a purely retrospective model the later steps of this investigation might be skipped, and may lead the analyst to miss the ground truth of what is actually occurring. In this case, the analyst plays the long game and is rewarded for it.

Additional Benefits of Prospective Collection

In addition to the benefits of making better use of storage resources, a model that leverages prospective collection has a few other immediate benefits to the investigative process. These include:

Realistic-Time Detection. As I’ve written previously, when the average time from breach to detection is greater than two hundred days, attempting to discover attackers on your network the second they gain access is overly ambitious. For that matter, it doesn’t acknowledge the fact that attackers may already be inside your network. Detection can often its hardest at the time of initial compromise because attackers are typically more stealthy at this point, and because less data exists to indicate they are present on the network. This difficulty can decrease over time as attackers get sloppier and generate more data that can indicate their presence. Catching an attacker +10 days from initial compromise isn’t as sexy as “real time detection”, but it is a lot more realistic. The goal here is to stop them from completing their mission. Prospective collection supports the notion of realistic-time detection.

Cognitive Front-Loading. Research shows us that people are able to solve problems a lot more efficiently when they are aware of concepts surrounding metacognition (thinking about thinking) and are capable of applying that knowledge. This boils down to have an investigative philosophy and a strategy for generating hypotheses and having multiple approaches towards working towards a final conclusion. Using a prospective collection approach forces analysts to form hypotheses early on in the process, promoting the development of metacognition and investigation strategy.

Repeatability and Identified Assumptions. One of the biggest challenges we face is that investigative knowledge is often tacit and great investigators can’t tell others why they are so good at what they do. Defining prospective collection criteria provides insight towards what great investigators are thinking, and that can be codified and shared with less experienced analysts to increase their abilities. This also allows for more clear identification of assumptions so those can be challenged using structured analytic techniques common in both medicine and intelligence analysis. I wrote about this some here, and spoke about it last year here.

Conclusion

The purpose of this post isn’t to go out and tell everyone that they should stop storing data and refocus their entire SOC towards a model of prospective collection. Certainly, more research is needed there. As always, I believe there is value in examining the successes and failures of other fields that require the same level of critical thinking that security investigations also require. In this case, I think we have a lot to learn from how medical practitioners manage to get from symptoms to diagnosis while experiencing data collection problems similar to what we deal with. I’m looking forward to more research in this area.

On the Importance of Questions in an Investigation

questionsI spend a large part of my day studying cognition related to security investigations, which can ultimately be boiled down to thinking about how we learn and process information during and around our investigative processes. As part of my research, one of my professors recently pointed me towards a TEDx video by Dan Rothstein entitled “Did Socrates Get it Wrong?”. In this fourteen minute talk Rothstein questions whether Socrates approach of expert led questioning, commonly referred to as the Socratic method, was wrong. He brings up quite a few fascinating points, but ultimately concludes that Socrates was right and wrong, and that strategic questioning is of the utmost importance, but that it can also be an entirely student lead exercise. The key here is that asking the right question is critical for exploration, and of course, getting to the right answer.

This has quite a few implications to security investigations. Strategic questioning as a means towards finding and eliminating bias is something that immediately comes to mind, but not what I want to talk about here.

At a more fundamental level is questioning as the essence of the investigation process. I tend to believe that an investigation itself is simply a question. Usually something like this:

  • What happened here?
  • Did we get compromised?
  • Did APT[x] access any of our information assets?

Going one step further, I would also hypothesize that every action we take during the course of an investigation can be distilled down into a question, like these:

  • Does the activity identified in this alert match what the signature was trying to detect?
  • Did internal Host A communicate with external Host B?
  • Did the device download and execute the stage two payload of this malware family?
  • Is there a log indicating that a specific file was accessed?

Most of the time these questions don’t materialize in this form. Typically, they develop in our subconscious and analysts go forth looking for answers before they’ve articulated the question fully. I may not actually ask myself “Does the data in this PCAP match what the signature was looking for in the appropriate context?” before I go look at the signature to see what it was attempting to detect, but subconsciously that is exactly what I’m doing. Research suggests that a lot of this can be attributed to the formulation of habits or intuition (potentially in a brain structure known as the precuneus) that help us be more cognitively efficient. While this type of intuition can help us get things done faster, there is immense value in ripping these things from our subconscious into our conscious thought so that they can be articulated.

A couple things come to mind immediately when assessing the value of articulating questions consciously. First, if all of an investigation can be based on questions, we must ensure we are asking the right questions. This requires us to be consciously aware of those questions before we seek to solve them. Second, if we hope to successfully train the next generation of analysts then we have to teach them to ask the right questions, again requiring us to be consciously aware of what they are.

If you are a security investigator or are responsible for training them, consider creating a culture of articulated questions in your SOC. Before acting, attempt to determine what question you are trying to answer and share that information with your peers. I would bet that you will find this type of strategic questioning will help you ask better questions and more effectively guide your investigation towards an appropriate goal.

References:

Dan Rothstein, “Did Socrates Get it Wrong”, TEDx Somerville – https://www.youtube.com/watch?v=_JdczdsYBNA 

Technical Book Purchases Making a Difference

All of the royalties from Practical Packet Analysis and Applied NSM are donated to public school classrooms as well as a specific group of charities. Half way through 2015, your purchases of these books funded the following:

Dupo, IL – One Apple TV
This device will allow students to broadcast tablets to the classroom and will allow for group interaction with a limited number of devices.

Ypsilanti, MI – Two Raspberry Pi starter kits  and touch screen LCDs
Will be used to teach students how to code and debug programs.

Brunswick, GA – Lego Mindstorms kit and circuit building kits
Equipment will be used for an elementary school maker space

Bassett, VA – 3D Printer
Printer will be used as a part of a Maker Space in the elementary school’s library

Orlando, FL – Four DragonTouch Tablets
These devices will allow for customized tech learning plans to be delivered to elementary school students.

Lyndonville, VT – 3D Printer
Printer will be used as a part of a new technology design class focused on STEM education

Stone Mountain, GA – Ten Raspberry Pi kits and five RC robotics kits
Used for developing a technology course to teach kids about programming and robotics

New Lothrop, MI – Two Arduino kits, red boards, soldering kits, and misc sensors
Used in high school technology classes to teach kids about electronics, soldering, and programming

Claysville, PA – Ten Arduino invention kits
Allowing middle school students to explore and invent things that will teach them about electronics, robots, and coding

Charlotte, NC – Raspberry Pi starter kit, electronics kit, invention kit
Equipment will be used to build a Maker Space in the middle school’s library.

Dunlap, IL – Ten Arduino ultimate starter kits
Kits will be used in conjunction with club activities to teach students how create digitally controlled devices

Hartford, KY – Lego Mindstorms EV3 Kit
Kit will be used to develop a middle school robotics program

In additions, cash donations were made to the following:

  • Hope for the Warriors
  • Autism Speaks
  • Hackers for Charity
  • Kiva

If you purchased a copy of one of these books, thank you for contributing to these worthwhile causes. We are using education to fund more education.

Working Memory and the Visual Investigative Hypothesis

Late last year I wrote a blog post focused what I have perceived as a coming evolution of focus for security investigations. This evolution will push us into an era where the human analyst takes center stage in a security investigation, and where tools and processes will shift to augment human cognitive ability. In this article, I want to expand on some of those thoughts and describe my research on how human analysts solve investigations. This is summarized as a concept I refer to as visual investigative theory.

I want to begin by revisiting the KSU ethnographic study I called out in a previous article. When several KSU sociologists spent time performing an ethnographic study of a security operations center they had some very interesting findings. Based on those findings, I drew the following conclusions:

Investigative process knowledge is tacit. While experienced analysts have the ability to quickly solve investigations, they almost never have the ability to accurately describe what makes them so effective.

Fundamental skills and domains aren’t well established. We have an inability to identify the fundamental cognitive (not platform or technology specific) skills that are required to successfully detect and response to compromises. Further, we have not clearly identified subdomains of the broader security investigation domain, and differentiated the cognitive skills necessary to define and excel at each of them.

Knowledge transfer is limited. Without identified skills and domains, or adequate explicit process knowledge, our ability to train less experienced analysts is hampered. Most SOC’s rely exclusively on “over the shoulder” training where less experienced investigators simply watch experienced investigators work. While this has its place, a training program founded exclusively in this type of instruction is fundamentally flawed and lacks proper fundamental building blocks.

Investigations rely on intuition. The aforementioned findings lead to the conclusion that the investigative process relies heavily on intuition. Beyond tool and technology specific processes, investigators rely almost exclusively on what they might refer to as “gut feeling” to determine which steps they should take to connect the dots and solve the investigation at hand.

Examining Intuition

Intuition typically refers to the ability to understand something immediately without the need for conscious reasoning. The concept of intuition isn’t new, but its acceptance in the world of psychological research is. Psychology itself is a fairly young field, having only existed since the late 1800s and becoming exponentially more popular around the mid 1900s. Most founding fathers of psychology dismissed intuition. Even Sigmund Freud was famous for saying that “it is an illusion to expect anything from intuition.” However, that has changed in recent years with the development of more sophisticated brain imaging techniques.

If you’ve ever had a head injury where you’ve scrambled your eggs a bit, then there is a chance that you’ve been the beneficiary of an MRI scan. A newer and more advanced form of this is something called an fMRI scan, which allows doctors and researchers to measure the response level from certain areas of the brain when specific stimuli are introduced.

A group of researchers recently wanted to better understand the science behind intuition. To do this, they utilized fMRI technology to measure the response of different areas of the brain while presenting chess of varying degrees of expertise with match scenarios designed to draw upon their sense of intuition. While chess is very different from investigating security incidents, participants in each of these tasks claim to be successful thanks in part to unexplainable, tacit intuition.

In this scenario, researches selected two groups of chess players. The first group consisted of journeyman chess players who were familiar with the game, but would not be considered professionals or experts. The second group consisted of professional chess players with high global rankings. Both groups were presented with an image of a chessboard showing a game in progress for a short period of time. They were then asked questions relating to what moves they thought would be best next, while their neural response was measured using fMRI technology.

The results of this experiment were exciting because they identified a specific area of the brain where the chess experts showed significantly more activity than the inexperienced players. This area, called the precuneus, showed 2.1x more activity in the chess experts. This indicates that there is a biological basis for the unconscious thought that we’ve previously only been able to refer to as intuition. Because of this, many psychologists have begun to shift their beliefs such that they recognize the existence of intuition.

WorkingMemory-Fig1

Figure 1: The precuneus is related to what we think of as intuition

This gets really interesting when you consider that the precuneus is also known to be responsible for portions of our working memory, and our capacity to form and manipulate mental images. Before we dive into that, let’s have a quick primer on how human memory works.

Modeling Memory

There are multiple theories and models related to how memory is organized, but the most widely accepted model breaks it down into three distinct categories.

Sensory Information Store (SIS) is the most volatile form of memory, and is associated with the lingering sensations that follow a stimulus. For instance, if you are starting at an object and close your eyes, you may still “see” the object for a brief period as though its printed on to the inside of your eyelids. This is an example of SIS.

Short-term Memory (STM) is volatile memory that exists in conscious thought. When you are actively thinking about something, you are using STM to do so. This is why STM is often referred to as working memory (WM). Things that we perceive and only contemplate for a short period of time that aren’t worthy of storing permanently are processed by STM. In computing terms, STM is akin to RAM.

Long-term Memory (LTM) is our most resilient form of memory. Once something gets encoded into LTM it is stored for a very long time. For input into LTM, some theorize that we only encode certain things into LTM while others propose that we encode most everything. For output from LTM, some propose that we store everything but simply can’t recall it all, while others propose that some things that are encoded eventually decay out over time. In computer terms, LTM is similar to the concept of disk storage.

For the purposes of this article, we are most concerned with short term / working memory. As with memory in general, there are multiple models for how STM is organized, but one of the most widely accepted is Baddeley’s Model of Working Memory.

WorkingMemory-Fig2

Figure 2: Badelley’s model of working memory

In Badelley’s model, there are three components of WM that are all controlled by a central executive services.

The Phonological Loop stores audible information and prevents it from decaying by continuously repeating its contents. For example, it allows you to use working memory to remember a phone number by repeating it over and over again in your head.

The Episodic Buffer holds representations that integrate multiple types of information to form a single unified representation of memory. It was a more later and more recent addition to the model.

The Visuospatial Sketchpad (VSSP) allows us to mentally picture and manipulate visual information about objects. For example, if you picture a multi-colored cube rotating so that different colors face you as time advances, you are using the VSSP. It is this portion of working memory we are most concerned about for the purpose of this discussion.

Visual Investigative Hypothesis

We can apply what we just learned about working memory to the earlier discussion about intuition. As we discovered, intuition is strong related to the precuneus. Examination of other psychology and neurology research tells us that the precuneus is involved in several different things, including (surprise!) working memory and visuospatial processing. While not definitive, this does lead us to believe that the visuospatial sketchpad and the mental visualization and manipulation of objects may be related to intuition and how humans solve complex problems.

Of course, I’m not a neuroscientist and there is still quite a bit of ongoing research here. However, I think there are many cases when this theory makes sense. For example, prolific and prodigal musicians have been known to say that they can literally “see” the music as they are composing or playing it. Individuals who practice stock trading will also speak about how they can see trends forming before they actually happen, allowing them to execute smart orders and make a sizable profit. Even going back to our earlier discussion of chess, expert chess players will state that a reason they excel at competition is their ability to “see” the board and picture future situations better than their opponents.

It would truly appear that humans excel at processing information when it’s possible for them to visualize it, so why wouldn’t the same apply to security investigations? I’ve been an analyst myself for quite some time, and I’ve also had the pleasure of working with and speaking to a lot of other analysts, and I think this does apply. It’s important to realize that in a lot of cases, people may visualize things like this subconsciously without actually realizing that they are solving problems visually. I believe that individuals who excel at solving information security investigations also solve problems visually. In fact, I think that many subconsciously see a data or attackers moving thorough a network as they assimilate various data points from system logs, packet captures, and IDS alerts. I’ve summed this theory up into something I call visual investigative hypothesis.

In short, the visual investigative hypothesis states that security analysts are more efficient, and more likely to arrive at a conclusion based on an accurate representation of events that occurred when they are able to visualize the relationships that represent a network compromise and build a mental picture of an attacker moving through a network.

In psychology, most principals exist as either hypothesis or theories because our understanding of the brain, while advancing, is still very limited. Many highly probable concepts and others considerably less probable will likely never advance to being considered confirmed truths, so while I do expect to mold my research into a more sound theory, I certainly don’t expect to ever definitively and quantifiably prove it as a ground truth. A great deal of my doctoral coursework will be geared towards development of visual investigative hypothesis into more formal theory, which will involve continued efforts interviewing security analyst and conducting case studies regarding their investigative habits, failures, and successes.

Maximizing Working Memory Effectiveness

While there is still much work to do, if you subscribe to the visual investigative hypothesis there are a few ways you can begin shifting your investigative technique towards something that is much more visual. When considering working memory, its important to understand that it is a finite resource. Humans only have so much capacity in working memory, just like computers have only so much RAM. Some people have a larger WM capacity while some have less. In addition, external factors like tiredness and stress can negatively affect the situational capacity of WM. Knowing WM is a finite resource can guide us towards ideas for optimizing our investigative habits and the tools we use to perform our work.

As an example, consider the magic number seven, a theory developed by Princeton psychologist George Miller. This theory states that an average person can hold seven objects in working memory, plus or minus two. This means that if I were to list twenty random objects, you are likely to only remember five to nine of them. This is the result of biology, and most likely something that can’t really be changed person to person.

This applies to the investigative process when you think about all of the various pieces of information that an analyst has to store in WM when attempting to describe an anomalous event or breach. At any given point an analyst might need to consider a pair of IP addresses, a port number, protocol, two system roles, a detection signature, a file name, a portion of a file hash, a system name, a start time, and an end time. No wonder investigations push the limits of WM capacity.

Overcoming magic number seven and limitations of working memory is all about making the right information available at the right time, and in the right way. Some ways that we can do this during an investigation include:

Data Scoping: Analyst should only retrieve the information they need for the time duration required. Have too little data is a bad thing, but having too much data can be just as bad. This can be achieved by formulating concise questions before seeking data, and making sure your data sources can be queried flexibly.

Focusing on Relationships: Humans remember things better if they can associate them with existing schemas in long-term memory. If I were to tell you ten random objects and ask you to recall them an hour later, you would have trouble doing so. If I repeated the same experiment with related items like breakfast foods, your recall would be much better. We can force objects in an investigation into similar schemas by describing entities as nouns and their interactions as verb, building graph/link representations that help us conceptualize a potential attackers movement through a network this way. One of the bigger gaps between network attackers and defenders is that attackers often think in this type of relationship-centric manner, and defenders don’t.

Rethinking Search: Searching through data itself should be less of an iterative process of querying a data source, viewing a response, and repeating. It should be more of an exploration where the analyst anchors themselves to a point in the data and they explore outward from there. This supports a relationship-centric view of security.

Visualizing Events over Time: The activities of a suspected adversary typically lend themselves well to groupings of major and minor events occurring at specific times. Using timelines to represent these groupings of events with pointers back to the source data can provide a visual construct that is useful for easing pressure on WM.

Easy to Remember Names: Long strings of characters like MD5/SHA1 hashes or even IP addresses take up valuable space in WM. Often times analysts will try to remember sections of these objects just as the last octet of an IP address or the last few characters of a file has. Another strategy here is to assign common names to various unique hosts and files for quick reference during the investigation. I’ve done this with animals or food in the past. Thus, f527fe6879ae8bf31cbb1e5c32d0fc33 becomes Fennel, and 123.1.2.3 becomes Puma. This is made easier when the tools used facilitate it. Of course, protocols like DNS can make this easier too, but its important to remember that a DNS name simply represents a point to a host, and not a host in itself.

Conclusion

The concepts surrounding the visual investigative hypothesis aren’t new. Most of us know that the right visualizations can help us find evil better, but beyond that we don’t collectively have a lot of solid science that we can use to apply it to security investigations or how we train analysts. While I think there are some practical takeaways we can draw from this immediately, there is still much work to be done. I’m looking forward to continuing my research here and applying cognitive psychology concepts to the security investigation process.

The Value of Watching Game Tape

coachcalBeing a native Kentuckian, it’s no secret that I bleed blue. As I write this, my Kentucky Wildcats are towards the end of what I hope will continue to be a historic season. All of the prestige that comes with being a tournament favorite also brings copious amounts of media coverage. A recent article by the Wall Street Journal caught my eye. I’ve always known that Head Coach John Calipari isn’t a big fan of exposing his players to game tape, but I’ve never known exactly why until now. The WSJ article addresses this exact topic. The article is worth a read, but this section sums up a lot of Coach Cal’s philosophy:

Kentucky touches on its opponents in the days before a game with a series of walk-throughs in which the Wildcats’ scout team apes the upcoming opponent’s strategy. By the time Kentucky’s players watch film, they have already seen the opponent’s sets on the court, often several times. Even then, though, they aren’t looking for specific plays.

“You see the idea of their offense,” Kentucky guard Aaron Harrison said. “We don’t need to watch every single play. We need to know the options off each set they have. After that we just have to defend.”

The article goes on to mention that assistant coaches responsible for video typically only allow a maximum of eight minute of video review. This is astonishing, because it goes against the grain of what most teams do. The majority of teams in college basketball place extreme focus on film review, often devoting multiple hours a day to it and even sending players home with iPad’s to review game tape away from team facilities. Coach Cal instead makes the players focus heavily on their own strengths and weaknesses, helping them understand that with their talent level, they can beat most anyone if they play as the best version of themselves. In this approach, Kentucky’s losses often have just as much to do with the team beating themselves as it does with them being beaten by their opponent.

Of course, limiting exposure to game tape isn’t a completely new concept. Another coach that practiced this, albeit in an era where obtaining video of teams performances was much harder, was legendary UCLA coach John Wooden. Coach Wooden won an unmatched 10 national championships during his tenure and is widely accepted by many to be the greatest college basketball coach of all time.

Given the audience of my blog, you can probably guess that this post isn’t purely about basketball. This got me thinking about how the Wooden/Calipari approach to limiting game tape applies to using “game tape” in information security. In our case, game tape is more commonly known as threat intelligence. In most cases, this is explicit knowledge about an adversary based derived by researching previous compromises and malware samples. While I can’t possibly argue that threat intelligence should be abandoned, it does make me wonder about the emphasis placed on it in certain environments. In the right situation, might it actually be preferable to decrease focus on threat intelligence and instead focus inward to ones own network to perform effective detection? Perhaps it’s possible that threat intelligence can sometimes be used as a crutch that substitutes for understanding your network as well as you should. That’s a bit radical, but it’s food for thought.

Coach Cal and Wooden both had the benefit of having very good players as their disposal. In the same manner, I think selectively limiting reliance on threat intelligence requires an “A team” of players in your SOC. Having the capability to monitor your network assets and relationships on a very granular basis requires talent and resources, and that simply isn’t something most organizations can do. As information security takes a more mainstream role in our society, this may change as new research and tooling is built to support this line of thought. It might also be positively impacted as the general skill gap between established and amateur defenders narrows.

This approach also requires forward thinking viewpoint on the fundamental nature of breaches. It requires that you accept that prevention eventually fails, and that you don’t consider breaches to exist in a binary state of being. An attacker who breaches your network will have a set mission or series of goals, and the degree to which they succeed and the impact to your business or data determines the nature of the breach. There isn’t simply a breach, there are degrees of breaches. Just like a basketball team can’t expect to keep the opposing team from scoring any points at all, the network defender can’t expect their network to remain forever unbreached. At the end of the day, it’s all about making sure you have more points than your opponent/adversary.

All in all, this might be a bit of a stretch. That said, it does have me thinking quite a bit about the reliance on threat intelligence in defending networks, and what can be done to better understand my own network so that I can focus my defense, detection, and response around where critical data exists and where potential weaknesses exist. Ultimately, having great threat intelligence is not a panacea and there are a lot of ways to think about defending networks that exist independently from detailed knowledge of attacker tools, tactics, and procedures.